How to Import Data and Export Results in R


How to Import Data and Export Results in R

With the craze for “big” data, analytics tools have gained popularity. One of these tools is the programming language R. In this guide, I’ll show how to extract data from text files, CSV files, and databases. Then I’ll show how to send that data to a web server.

You may be wondering, Do I need to learn a new language all over again? The answer is no! All you need to know is a few commands.

Programmers from diverse backgrounds who work on web applications in a variety of programming languages can import the data into R and, after processing, export it in the format they require.

Note: If you’re not familiar with R, I recommend SitePoint’s article on how to install R and RStudio. It provides basic commands in R and a general introduction to the language. This post covers commands that can be run on the R terminal without the use of the RStudio IDE. However, handling large datasets on a terminal could turn out to be difficult for beginners, so I’d suggest using RStudio for an enriched experience. In RStudio, you can run the same commands in the Console box.

Handling Text Files

A text file present on your local machine can be read using a slightly modified read.table command. Because it’s designed for reading tables, you can set the separator to an empty string ("") to read a text file line by line:

file_contents = read.table("<path_to_file>", sep = "")

Note: where you see angled brackets such as in <path_to_file>, insert the necessary number, identifier, etc. without the brackets.

The path to the file may also be the relative path to the file. If your rows have unequal length, you have to set fill = TRUE as well. The output of this command is a data frame in R.

If your file is too large to be read in one go, you can try reading it in steps using the skip and nrow options. For instance, to read the lines 6–10 in your file, run the following commands:

connection <- file("<path_to_file>")
lines6_10 = read.table(connection, skip=5, nrow=5) # 6-10 lines

Continue reading
How to Import Data and Export Results in R
on SitePoint.

This article was republished from its original source.
Call Us: 1(800)730-2416

Pixeldust is a 20-year-old web development agency specializing in Drupal and WordPress and working with clients all over the country. With our best in class capabilities, we work with small businesses and fortune 500 companies alike. Give us a call at 1(800)730-2416 and let’s talk about your project.

FREE Drupal SEO Audit

Test your site below to see which issues need to be fixed. We will fix them and optimize your Drupal site 100% for Google and Bing. (Allow 30-60 seconds to gather data.)

Powered by

How to Import Data and Export Results in R

On-Site Drupal SEO Master Setup

We make sure your site is 100% optimized (and stays that way) for the best SEO results.

With Pixeldust On-site (or On-page) SEO we make changes to your site’s structure and performance to make it easier for search engines to see and understand your site’s content. Search engines use algorithms to rank sites by degrees of relevance. Our on-site optimization ensures your site is configured to provide information in a way that meets Google and Bing standards for optimal indexing.

This service includes:

  • Pathauto install and configuration for SEO-friendly URLs.
  • Meta Tags install and configuration with dynamic tokens for meta titles and descriptions for all content types.
  • Install and fix all issues on the SEO checklist module.
  • Install and configure XML sitemap module and submit sitemaps.
  • Install and configure Google Analytics Module.
  • Install and configure Yoast.
  • Install and configure the Advanced Aggregation module to improve performance by minifying and merging CSS and JS.
  • Install and configure Schema.org Metatag.
  • Configure robots.txt.
  • Google Search Console setup snd configuration.
  • Find & Fix H1 tags.
  • Find and fix duplicate/missing meta descriptions.
  • Find and fix duplicate title tags.
  • Improve title, meta tags, and site descriptions.
  • Optimize images for better search engine optimization. Automate where possible.
  • Find and fix the missing alt and title tag for all images. Automate where possible.
  • The project takes 1 week to complete.